Chapter 33 Electric Fields and Potential

Standards:	
5.e. Students know	particles are sources of electric
and are sub	ject to the of the
electric fields from other	•
5.f. Students know	materials and electric
(electric charges) are sources of
fields and a	re subject to arising
from fields of	of other sources.
5.g. Students know how to dete	ermine the of a
magnetic field produced by a cu	urrent flowing in a wire
or in a	-
5.h. Students know c	magnetic fields produce
fields, there	by inducing in nearby
conductors.	
Objectives:	
1. Describe how the streng	th of an field at two
different	can be compared.
2. Describe how the	of an
field at a point is	
3. Relate the	of electric field
to the	_ of the field.
4. Describe the condition s	under which something can be completely
from	an field.
5. Explain why a	object in an
field is considered to have	/e potential.
Distinguish between	potential energy and
electric	·
7. Describe the	of a
generator.	
Goals	
This chapter develops the conc	ept of the field. The
concept of i	s built up from electric
and electric potential	The chapter concludes with a
discussion of the	generator.
Introduction	
The around	a strong, a
hole, or a co	oncentration of charge

is not the same as the space would be if ______ of those things were there.

The ______ is _____ and is said to contain a ______ field.

33.1 Electric Fields

The ______ field that ______ a _____ is a ______ field. We think of objects _____ with gravitational fields rather than the _____ that are responsible for the______. The _____ around every electric _____ is filled with an electric ______. An ______ force holds an _____ in orbit around a _____ There is ______ contact between the electron and the proton, they are "acting at a ______." The ______ interacts with the ______ field of the ______ in ______, and are ______ in ______ with this______.
The force that one ______ charge ______ on _____ can be described as the _____ between one _____ and the electric _____ set up by the other. An electric field has both _____ and ______. Its ______ can be measured by its _____ on _____ located ______ the field. Where the ______ on a ______ is _____, the ______ is ______. Where the _____ on a _____ is the _____is _____. The ______ of the electric field is the direction of the electrical ______ on a small ______ test charge. If the charge that sets up the field is , then the force is from that charge. If the charge that sets up the field is , then the force is that charge.

33.2 Electric Field Lines

Since an electric _	ha	s both	and
	_, a useful way to des	cribe an eleo	ctric field is with
electric field	, also ca	alled	of
	. Where the lines are	farther	, the
field is	Where the li	nes are clos	er
	_, the field is	·	
For an	charge, the _		extend to
	For two or more		charges, the
lines	from a		charge and
	_ on a	charge.	Charges are spread
out over a wide va	riety of surfaces, and	they	•
This	is communicate	ed to neighb	oring
	_ by changes in the el	ectric	•
The electric field is	s a	_ of	·

Please leave room to write and answer the question on p. 521.

33.3 Electric Shielding

A _____ test charge located exactly in the _____ force.

The	on one side of the conductor would tend		
	the test charge	to the	But, the
electrons on the		_ side of the conductor	would tend to
pull a test charge t	o the	equally hard,	
·	the	on the	of a
have spread the		emselves	over the
	of the conducto	or.	

Please leave room to write and answer the question on p. 523.

33.4 Electric Potential Energy

Α	object can have		energy by	
virtue of its	in an		_ field.	
	is required to	а		
	particle	the elec	ctric	
	of a charged body. T	he electric pot	ential energy of	а
charged particle is	W	hen	is done	Э
to	it	the electric		
	of something	th	at is	
	. If we push a small _		charge	
	to a	charged sp	here, we will	
expend	to overcome	electrical		
Just as	is done in		a	
	, work is done in		_ the	
	tł	ne electric	0	of
the sphere. This	is e	qual to the ene	ergy	
	by the	The ene	ergy that charge	
now	by virtue of its _		is called	
electric	energy. If the	charge is	,	it
will	in a direction		_ from the spher	e,
and its electric	energ	y will transforr	n into	
	energy.			

33.5 Electric Potential

If we push	charges instead, we do	
as much work	charges in the	
location will have	the electric	
energy as		

Rather than deal with the _____ potential energy of a _____ of charges, it is convenient to consider the electric potential energy _____ charge. This is the

	_ electric poten	tial energy	/	by the
	_ of the charge	at any loc	ation. The potent	ial energy
per charge - wha	tever the		of charge – w	ill be the
same.				
This is called		potential.		
	Electric		Energy	
Electric Potential	=			
The SI unit of me	asurement for e	lectric	is	s the
	The symbol f	or volt is _		The
	_ energy is mea	asured in _		,
	_, and		is measured in	
	_, C.			
				_
1_		= 1		
Α	of 1			1
	of	P	oer	of
charge.		-		
Ū				
NOTE: 1		is a	6	amount of
charge.				
0				
Please leave roor	n to write and a	nswer the	Question on p. 5	25.
			·	
lf a	has a pote	ential of		volts, it
would take	I		of energy	per
	to bring a		charge from	n N
	far away and		it to the	charge on
the	Since ele	ctric note	ntial is measured	in
	it is common	lv called		
	_, it is common	iy calica _		-•
33.6 Electric Ene	erav Storage			
Electrical energy	can be		in a device calle	da
Electrical energy	A capacitor is		of co	nducting
	A capacitor is	o a	Ui CU	
	_ separated by	a	hon the platae of	a capacitor
are attached to th		י טנוו כ ו. ۷۷ ההל	nen me plates of	a capacitor
are allached to th	ethe fellow	anu		
		ing nappe		nlata
side of the battery	/ terminal pulls _		from the	plate
connected to it, a	nd the battery "_		the elec	trons
	_ the battery's _		terminal	to the
	_ plate.			
I he	has		and	
oborgo on hoth			orging propos is	

4

charge on both ______. The charging process is ______ between the

plates	the potential difference between the battery		
	- the battery		ne
	the battery	, and	the
	the plates and the		together they
are, the	charge the capa	acitor can	
A charged capacito	or is v	vhen a	
path is	between the		The power
supply of a TV set,	even if it is turned		_, has capacitors
which have	that can be		if
discharged	a person! Th	ne	stored
in a	comes from the		required to
	_ it. The	is in the f	orm of the electric
	between its	·	

Between	plates the electric field is		
	, so the	_ stored in a	
	is energy stored in the	field.	
Electric fields	are storehouses of	Electric fields can	
be directed _	and guided	metal	
wires, and	over	distances.	

33.7 The Van de Graaff Generator

The Van de Graaff	⁻ Generator is a la	ab device for buildir	ng up high
	. The revolving _		inside the machine
carries	from wh	ere they are deposi	ited, at the bottom
of the belt, to the _	of the belt, in the		
	. The	of the dom	e has
	_ charge, so the e	electrons	from the
	, through the	of	the dome, to the
	of the dome. A	1 meter dome can o	develop voltages
as high as	millio	on volts. At	million
volts, air	down,	and the machine ca	an
	through the		

Possible Misconceptions to Correct

- 1. Electric ______ energy and electric ______ are the ______ thing.
- 2. A ______ is a ______ of electrical
- 3. _____ voltage is _____ under _____ under
- 4. The ______ produced by rubbing a balloon on one's hair is ______ compared to the ______ of electric ______ in the household.